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Capillary surfaces with prescribed volume are determined numerically. The obstacles that 
confine the given amount of liquid may be planes in space arbitrarily chosen. Parameters of 
the problem are the Bond number, the contact angle, and the volume. Results for several 
examples are presented, such as a drop in a corner and on an edge. lc: 1990 Academic Press, Inc. 

1. INTROI)~~TION 

In this paper we describe a numerical method to determine approximately the 
shape of the domain R filled by a liquid of given volume V,, which is confined to 
a given container @ the walls d@ of which are planes. It is assumed that the liquid 
is at rest under the influence of surface tension, adhesion forces to the walls, and 
gravity. In general, this problem does not have unique solutions; there may be 
infinitely many. Therefore, we restrict the problem in that we impose certain 
assumptions on the geometric configuration in space. A model for the problem goes 
back to Laplace [7], who stated that on a capillary surface the difference of the 
pressures on either side is twice the product of the surface tension and the mean 
curvature. The modern mathematical theory of capillary surfaces is dealt with in 
[l, 21. This is closely related to the theory of minimal surfaces, cf. [9]. 

Numerical techniques for the calculation of capillary surfaces were developed by 
many authors in the case where the surface is a graph of a function, cf. [S]. 
A systematic study of problems which reduce to ordinary differential equations was 
recently carried out in [5]. 

Here we introduce a finite element method (see Section 3) which also works in 
the cases of parameterized surfaces. The basic idea is similar to what was used in 
[4, 121 for the Plateau problem. 

2. THE VARIATIONAL PROBLEM AND ITS EULER-LAGRANGE EQUATION 

First of all, we introduce the notations necessary to describe the 
problem (Fig. 2.1). 
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FINITE ELEMENT METHOD 

Figure 1 

UD = container = (not necessarily bounded) domain in space $93’ 

S@ = wails of the container = union of a finite number of planes 

8 = domain occupied by the liquid, Q c @ 

SR = LAOS(Z) u clos(C) = boundary of .Q 

T = capillary surface = free surface of 52, r c int @ 

x = wetted surface on the walls of the container, Z: c S@ 

c’= volume of Q 

k’, = prescribed volume 

S = area of I- 

F= area of z 

G = gravitational energy 

E = total energy 

b = gpl ‘/u = Bond number 

g = gravitational acceleration 

p = density of the liquid 

I = characteristic length of @ 

0 = surface tension 

13 = relative adhesion coefficient 

.Y = i-u,: xzI x3) = point in space !R3 

The total energy in dimensionless form is given by 

E=S+bG+/M3 
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where 

S=s dr, x3 dQ, 
I 

G=i 
‘R 

F=l dZ. 
z 

cf. [2]. 
The variational problem characterizing equilibria is 

(2.2) 

E* = min{E:Q c CD, V= VO} (2.3) 

with 

?‘= - ! 
d.Q. (2.4) 

s-2 

Here we use a specific representation of the admissible domains R, or, in other 
words, of the admissible surfaces ZY 

Notations. 

TO = reference surface, ITO c int @, X, c 4M 

2: r, + *X3 = fixed vector field on r, with 

(a) Z is directed outwards with respect to Q on int(f,) 

(b) Z is tangential to &B on Jr, 

A = (u: r, + ‘% : u smooth > = space of variations of f,. 

Now the surfaces r taken into consideration have the form 

f(u)= {A-= Y+U(Y)z(Y):YEz-o}. 

From now on, to clarify the relationships, we write 

S(u), G(u), F(u), L’(u), and E(u) 

and reformulate the variational problem (2.3) as 

(2.5) 

E(u*)=min{E(u):uEA, V(u)= V,}. 

Introducing the Lagrange functional 

L(u) = E(u) - A( V(u) - VO) 

(2.6) 

= S(u) + bG(u) + pF(f4) - A( V(u) - V,) (2.7 j 

with the Lagrange parameter R we arrive at the Euler-Lagrange equation for 
problem (2.6), namely, 

(ix(u), v) = 0 for all vgA. (2.8) 
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Using standard methods from differential geometry (cf. [6, I1 1) we caiculate 

Here we have used the following symbols: 

Sj = derivatives with respect to the parameters of I 

., A = scalar and vector product, respectively 

g=det(i?i~~d,X)i,=,,z=/ax, n ZX,i’ 

sx, A c?XJ 
,’ = 

(8X ! A 2X,( 
= unit normal vector on F 

T = unit tangent vector on ST 

Rernurk Integrating the differential of S by parts or1 I-, one 0b:ains 

with 

Therefore, 12.8) 1s equivalent to 

and 
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If Z were equal to V, we would obtain 1’ . Z = 1 and M = - 2H (H = mean curvature 
of Z-, see [6, p. 471); hence (2.1 la j means 

2H=bx,-/1 on r. (2.12a) 

On the other hand, we have assumed that 2 is tangential to &D on c?C since z is 
also tangential to a@, Z A T is normal to M. Therefore we obtain 

v. (Z A T) = cos ojz A TI with 8 = angle between r and z; 

hence (2.11 b j means 

/I= -cos 0. (2.12b) 

3. THE FINITE ELEMENT METHOD 

The numerical method used in this paper is a finite element method in the spirit 
of the orthodox Rayleigh-Ritz approach: 

(a) We assume that r,, is the union of triangles in ‘S3, which have IZ different 
vertices Vi, i= 1, . . . . n. We call r, the “skeleton.” 

(b) To each vertex Vi we assign a direction 2;~ S3, satisfying the same 
conditions as Z in 2. We construct a “chapeau” function Zi: f, -+ S3 such that Zj 
is continuous on r,,, linear on each triangle of f,,, and it satisfies 

Zi( Vj) = 2&;, i,j=l n, , . . . . 

d, being the Kronecker symbol. 
(c) The admissible surfaces are of the form 

T(u)= x=y+ i z4,zi(Y):YE~o 
i 1 

) (3.1) 
i= 1 

where ZI is the vector (ui, . . . . u,) of unknowns ui. In this way, we get (3.1) by 
replacing 

u(Y) Z(Y) in (2.5) by f u,Z,(Yi). 

Following this procedure we obtain a family of surfaces in space all of which are 
unions of triangles; and each surface is represented by n unknowns 11~. 

With the definitions (2.1), (2.2), and (2.4) for E(u), S(U), G(u), F(u), and V(u), 
we now consider the discretized variational problem 

E(zl*)=mintE(u):z~E~N’, V(u)= V,),. (3.2) 
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The Euler-Lagrange equation associated to this problem is 

with L(u) defined by (2.7). Similarly to (2.10a)-(2.iOd), the partiai derivatives are 
given by 

x3 \I Zi dL 

The integrals involved are evaluated separately for each triangle that is adjacent to 
.the vertex V, and then the contributions are summed up to give the derivative. 

n principle. if the volume V, is prescribed the Lagrange parameter i is an 
unknown to be determined as part of the problem. For this mathematical study, we 
have decided to prescribe i and obtain a certain volume PL In a future paper vx 
are going to investigate in more detail the relationship between V and .G.: cf. 
also [5-j. 

Naturally, i 3.3 ) is a nonlinear system of equations for the unknowns 
u,, i= 1, . . . . !I. This is solved by the classical Newton method. i.e., the second 
derivatives of L(u) are calculated explicitly. The linear system to be solved in earh 
iteration step has a sparse symmetric indefinite matrix. This is dealt with using a 
variant of the conjugate gradient algorithm developed in [IO;. The major advan- 
tage of this approach is that no matrix has to be stored. but only a procedure has 
to be provided which calculates the product of the matrix mu!riplied with a vector. 

4. DETAILS OF -rm ALG~R~TI~~~ 

The realization of the finite element method used in this paper has the foliowing 
steps: 

Stq 1. The skeleton, i.e.. the triangles that To consists of> is obtained by 
successive refinements of a coarse skeleton. One starts with a smail number of 
triangles, e.g., 1, 2, or 3 and refines recursively in a regular way. The data sets 
needed to store the necessary information contain 

- a iist of triangles with their edges and vertices, 

- a list of edges belonging to iii: 
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- a list of coordinates of the vertices, 
- a list of coordinates of the directions Zi at the vertices Vi. 

Step 2. In each refinement step the directions Zj are interpolated linearly; thus 
the basic properties required of Z are maintained. 

Step 3. Since Newton’s method has safe convergence properties only if the 
initial guess is close enough to the solution, the following homotopy strategy is 
applied: initially, a skeleton is constructed according to (a). Then this skeleton is 
modified in the directions Zi such that it approximates a sphere with given centre 
and radius B or cylinder with given axis and radius. This sphere, or cylinder, resp., 
solves (2.12a) with b = 0 and 2 = 2/r, or /2 = l/r, respectively; it intersects the walls 
iM with known angles 8, not necessarily the same everywhere. Therefore this 
skeleton solves (3.3) approximately with known parameters; the residual is smaller 
the liner the triangulation is chosen. 

Step 4. The Bond number and the angles are modified in small steps in the 
sense of a continuation method until the problem in question is reached. During the 
process of this homotopy, the skeleton is updated whenever a solution is found; i.e., 
the old solution X of the form (3.1) is used as the new skeleton f, for the next 
Newton iteration. 

Step 5. After reaching the target values of the continuation process, one or 
more additional refinements may be carried out and followed by another cycle of 
Newton iterations to obtain a highly accurate solution on a line grid. 

5. RESULTS 

The method described in this paper was used to solve the problem of determining 
the shape of capillary surfaces in the following cases: 

(a) A sessile drop: @ = (X:X, > 0}, see Fig. 5.1. 

FIG. 5.1. The sessile drop: b = 1, 0 = 120’. V. = 7.04, S= 6.34, ,I= 3. 
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FIG. 5.2. The drop on an edge: b = 1, 0 = 120”, V. = 1.73, S= 4.72, L = 3. 

FIG. 5.3. The drop in a corner: b = 1, B = 120”, V, = 1.44, S = 3.4, i = 3. 

FIG. 5.4. The sessile drop between two parallel planes: b = 0, 0 = MY, V, = 0.95, S = 4, ,I= 0.6 
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FIG. 5.5. The drop in a box: b=O, #=60', C'o=0.23. S= 1.34, 1=0.33. 

(b) A drop on an edge: @ = {X:X, > 0, xX >O}, see Fig. 5.2. 

(c) A drop in a corner: @= {.X:X, >O, x,>O, _Y~ >O>, see Fig. 5.3. 

(d) A sessile drop between two parallel planes: @ = (x: - 1 <x, < 1, x3 > 0}, 
see Fig. 5.4. 

(e) A drop in a box: @ = {x: - 1 < s1 < 1, sz > 0, ,y3 > 0 3, see Fig. 5.5. 

Case (a) was also solved as a boundary value problem for a system of ordinary 
differential equations. Due to the axial symmetries of the problem standard 
methods can be used for this [3]. The results rounded to two decimals are 

J = 3.00, k’ = 2.04, s = 6.33. 

This is in good agreement with the values obtained with the proposed finite element 
method, see Fig. 5.1. 

5. PERFORMANCE 

For all of the five examples presented in Section 4 we give in the following a 
detailed account of the computational procedure and its performance. For examples 
1-3 and 4-5, respectively, we report which specific choices were made in the five 
steps of the algorithm as given in Section 4 and which computational work was 
involved. 

EXAMPLES 1-3 In Step 1 one initial triangle is used and this (Step 2) is refined 
twice. Subsequently the vertices of the planar triangulated surface are projected 
radially onto a sphere of radius 2 with center 

(0. 0, 1) for Example 1, 

(0, 1, 1) for Example 2, 

(I, 1, 1) for Example 3. 
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The resulting conract angle attained all along the intersection of the spherical s~?r- 
face and the walis is 8 = 120”. The number of points on the surface is 15. In Step i 
the parameters h(i) are simultaneously modified from O( 1) to 1 i 3 ), respectiveiy, lr”; 
five uniform homotopy steps. The number of Newton iterations in each of these 
steps is 3 or 4. The number of cg-iterations needed to solve the associated linear 
systems varies somewhat from step to step but is approximately 

0.4N for Example I, 

O.lN for Example 2. 

O.SN for Example 3; 

here N denotes the number of unknowns ?I;, cf. (3.1). The target values in h an& ,z. 
are reached but the discretization is much too coarse. Thus, in Step 5 two more 
refinements are carried out with subsequent Newton corrections requiring 4 to 5 
iterations and c&-iterations of 0.751V, 0.3&L and 0.751%’ for the three examples where 
now -v= 153. 

EXAMPLES 4-5. The initial triangulation consists of two triangles (Step I j and it 
is refined twice (Step 2’). Then the resulting vertices are moved (Step 3) to a cylin- 
der of radius I and axis in the direction of (0, 0, 1 j yielding a contact angle of W” 
and 25 unknowns. The parameters f3(A) are decreased in Step 4 to 60’ and 0.6. 0.3 
in Examples 4, 5~ respectively. For this 3-4 Newton and 0.75N !resp. G.~A:) 
cg-iterations are needed. Finally, one more refinements ieads in Step 5 TV 3i 
unknowns requiring 4 Newtons and O.SN cg-iterations for the corrector, 

T?e atuthors are grateful to Dieter Langbein from the Bateiie Institut in Frankfurt. FRG, and Ed Ibrig 
for useful discuwons. The second author was supported %y the Air Force 0:?ice oT Scientific Reseai;h 
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